If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2-18=0
a = 1; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·1·(-18)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{2}}{2*1}=\frac{0-6\sqrt{2}}{2} =-\frac{6\sqrt{2}}{2} =-3\sqrt{2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{2}}{2*1}=\frac{0+6\sqrt{2}}{2} =\frac{6\sqrt{2}}{2} =3\sqrt{2} $
| (x-8)/4=15 | | -1(x+2)=4+3+5+-4 | | 2x+12x=14x14x+3=31 | | 6x+12=3-x | | 7(5x-13)=900 | | 11(n–2)=5 | | 42°=x° | | 7y+-1=2(1y+3)+-2 | | (2a+3)(a-1)=8 | | 2(1s+11)=5(1s+2) | | 3-(10-x)=3(x+5) | | 815+x+2x=720 | | (x-5)°=29° | | p3=0.27 | | 22+15=d+-17 | | 2(5x-4)^4-625=1967 | | x+118+61=90 | | (x-3)^3-2=6 | | 2(p+1)=24 | | 0.6n=96 | | x+118+61=180 | | 0.2x=-15 | | 3b+-1=14+2b | | 27=2x-17 | | 3y–6=54 | | 4x-26=27 | | -4(x+9)=(-16) | | 42+8+11=6-8x-3x | | 5t-7=-7+5t | | 4x-26=2x+17 | | 3(x+4)^2-5=43 | | 3x—2=4 |